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Abstract

Cellular or tissue pO2 can be measured optically by the phosphorescence quenching method [1] using 

probes with controllable quenching parameters and defined bio-distributions [2]. We have described a new 

approach to oxygen imaging by phosphorescence, which draws from two-photon laser scanning 

microscopy (2P LSM) [3]. Intuitively, coupling phosphorescence imaging with 2P LSM appears to be a 

straightforward task. However, several critical issues must be dealt with: (i) design of probe molecules with 

the required two-photon absorption (2PA) cross-sections (σ2), high quantum yield of phosphorescence, 

and appropriate biological partitioning; (ii) development of code and methods to integrate measurement of 

long-lived species (microsecond to millisecond) with scanning stage microscopy; (iii) validation of these 

new probes and methods compared to traditional fluorescence based TPA systems. We are also 

developing methods to deliver the probes to the cellular environment. The most promising method for 

probe delivery is a nano-carrier called a polymersome; similar to a liposome, but made of polymers. Our 

progress in these areas will be reported on.

Two-photon Phosphorescence Lifetime Microscopy (2PLM)

Resolution vs. Signal

Oxygen Imaging Via Phosphorescence Quenching

Probe Design

•Antenna (coumarins) has high two photon absorption 

cross-section

•Dendrimer modulates sensitivity to oxygen and 

protects from other quenches

•PEGs provide water solubility and deters aggregation

•Pd or Pt porphyrin core senses oxygen

Additional probe details found in ref. [4]

Polymersomes

Delivery in to Cells
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TAT-functionalized polymersomes were formed using the thin-film hydration method; the hydrating solution 

contained 100 µM of the fluorescent probe R3F1 (analog of oxygen probe).  This is a fluorescent analog of 

our oxygen sensing probe, which can easily be monitored via standard microcopy techniques.  Dynamic 

light scattering indicated the  average polymersome diameter was 186 nm.  The dye-loading polymersome 

was introduced to RAW 264.7 macrophages (murine), and incubated overnight.  The samples were fixed 

with 4% PFA.

Widefield emission spectroscopy showed that emission was co-localized with the cells.  The bright pixels 

in the dye exposed plates were ~3-10x brighter than the brightest pixels in the control plates.  The dye 

exposed plates each had several thousand pixels with intensity above 5,000, while the control plates had 

less than 50.  To confirm the emission was from R3F1, we performed spectral imaging.  All bright pixels 

examined in the dye-loaded plates had emission spectra corresponding to R3F1, while the control plates 

showed emission spectra that is attributed to auto-fluorescence.
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Left:  Transmitted light image of cells loaded with R3F1.  Right:  Fluorescence image of same cells 

showing emission arises from the cells.
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•5-50 times tougher than liposomes

•Potential incorporation of large 

hydrophobic molecules

•Potential for variety of modifications

•Diversity of membrane polymers

•Potential for membrane 

functionalization

•Capable of biological activity

•PEO: FDA approved homopolymer that 

imparts to vesicles surface 

biocompatability and prolonged blood 

circulation times

Additional polymersome details in ref. 

[5]

Z-scan of a polymersome attached to the glass surface, p=14.4 mW.  Image shows phosphorescent 

photons after removal of the scatter and the background.  XY cross-sections are taken in 2 mm steps in Z 

from the bottom up (left-to-right, top-to-bottom in the images). A) Polymersomes in a cuvette equilibrated 

with air. B) The same sample imaged after addition of glucose oxidase/catalase enzymatic system to 

deoxygenate the solution.  Scale bar - 5 mm. [6]
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Top:  A control cell (left) and spectra taken from the points noted (right).  Spectra only show auto-

fluorescence.  Bottom:  Cell loaded with R3F1 (left) and spectra taken from points noted (right).  Spectra 

taken from pixels inside cell have the characteristic R3F1 spectra signature, in addition to auto-

fluorescence.
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Oxygen Quenching under various conditions: A) 

Presence and absence of protein. B) pH. C) 

concentrations probe. D) temperature
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