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Introduction

We desire to make devices and materials.
We need to move charge or energy long distances.

How do we correlate solution phase data with
solid state results? How do you move from
molecular studies to material sciences?

Can we determine principles of molecular design?

Can we correlate the photo-physics with the solid
state materials properties?




(Photophysical)
Experimental Techniques

 Steady state measurements
RAUAVAVAS
— Fluorescence

* Time resolved measurements

— Fluorescence (35 ps- seconds)

— Femtosecond transient absorption (300 fs- 6
ns)

— Nanosecond transient absorption (10 ns- us)




FS-TA

Ti:S Oscillator and Regen (CPA-2001)

A =775 nm, 1kHz, ~800 mW
SHG White light probe centered
OPA1 D_elay\ atA=775nm.
Visible excitation: OPA1
provides tunable light from
OPAZ ~550 to 710 nm; 775 nm
or 338 nm pulses are
F available by bypassing the
/\H OPA
\ ‘ml | 7 CCD :
22 P oot camera provides
sapphire 400-1100 nm detection
capability
INGaAs
NIR Redirection of probe to an
I Detectorn CCD InGaAs detector extends
Spectrometer detection wavelengths
DL?r';V through ~ 1800 nm.




Pump + Probe

Probe Only (GS)
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Porphyrin Oligomers







The “DD” Series

}\’max 8g @ }\‘max (be }\’max TFd
(SO—)SI) XmaX(SO—) (SIQSO) (S1_)Sn) ('co)e
[nm}“ S) [nm]“ [nm]4¢ [ns]
[M-1 em-
1]
DD 695 51400 711 0.16 980 1.09
(1085) (810) (0.03) (656) (17.6)
DDD 770 116000 806 0.22 1120 1.13
(1380) (875) ((1XIR)) (750) (7.32)
DDDDD 842 pARTIT) 883 0.14 1325 0.45
(1563) (955) ((1X129) (1980) (3.56)




NIR Band- Marker for structural
Inhomeneity In the excited state?
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Exceptional Near-Infrared Fluorescence Quantum Yields and Excited-State Absorptivity of
Highly Conjugated Porphyrin Arrays, Duncan, Susumu, Sinks, and Therien, JACS, ASAP




Tuning the Bandwidth-
Adding Porphyrin Units
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n (Porphyrin Units)
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Using the method of Melier et
al., the A, vS. n was fit with:

max

An)=4,. — (A4, — 4,)e "

A ,= 863 M
b=10.5







Conductivity (Scm’")

Large Impact In the Solid State!
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Normalized Absorbance

]

==

o
oo

g
o

=
o

=
ho

UV-ViIs Spectra

Trimer Spectra

THF Solution
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“O1” Series 1n Solution




Absorption Spectra
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Transient Absorption of ZnO1-3 In |
THF

Zn01-3 in THF Global f|tt|ng Indicates
two main time
constants: 63 ps and 800
ps. This Is somewnhat
shorter than those
reported for the DDD
series, which found
three time constants of
70 ps, 130 ps, and 1.24

Wavelength (nm) nS
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ZnO1-polymers

Batch Cat. Anax(NM) | Cond.
A AsPh3 911 4
B AsPh3 896 1
C PPh3 876 2
D P(Cyclo) 904 3
VAL [ONEX 777 5




0
9
<
°

O
N
'©

£

O
Z

UAVAAVARS

—7Zn01-1
Zn01-2
Zn01-3
Zn0O1-5
Polymer A
Polymer B
Polymer C

—— Polymer D
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Normalized Transient Kinetics of Polymer A
@487 nm

—— dA (0.497 W)
—— dA (4.85 uJ)
—dA (3.23 W)
——dA (1.32 uJ)

10 15 20 25 30 400 600 800 1000 1200 1400

Time (ps) Wavelength (nm)

Global fit produces 2-3 time constants:

Low power: 6.9 ps, 203 ps, and very long lived component
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3500

(dAA/E)/AA

Data: Data26_E
Model: Line
Equation: y = A + B*x
Weighting:

y No weighting

Chi"2/DoF = 8.6249E-7
R"2 = 0.99786

A 0.13134 +0.00215
B 0.24518 +0.00268




Singlet-Singlet Annihilation
(or fusion)

When an assembly of chromophores are photo-excited by a
laser, numerous chromophores in the assembly may be
excited.

If the chromophores are in good communication, the
excitons can migrate to each other and interact. *S+ *S >
S + **S

This higher excited singlet state (**S) generally quickly
dumps energy to re-form the first excited singlet state.

The net result 1s the destruction of one exciton and the
preservation of one exciton




Annihilation




Annihilation

Annihtlation 1s well known In the literature.
First seen in PS

Bimolecular process- second order kinetics
Should be power dependent

Can, in theory, back out the number of
chromophores involved

Indication of good electronic coupling




Annihilation Analysis

Assume a simple kinetic model where the
annihilation rate Is time independent (y,) and

defined as a pseudo-first order rate (rate per pair
of excitons) per Paillotin et al.*

* Paillotin et al., Biophys. J., 25, 513-534




ZnO1-polymers

v, (x10%2 1/s)

Batch Cat. Arnax(NM) | cond

A AsPh3 911 4 211

B AsPh3 896 1 11.3
C PPh3 876 2 44.4
D P(Cyclo) 904 3 93.1
Zn01-3 777 5 N/A




Linear Chain Model

¢ 7,;= [N(N-1)* 1,,,1/6
— Where N= number of sites sampled, T, = annihilation
time constant, and 7, Is the exciton lifetime at each
site
« Assuming no chain-chain interactions, which may
not be correct.

 Let us assume that the hopping rate is the same In
these systems (and it is 1 fs) and calculate a
hypothetical “n”




ZnO1-polymers

v, (x10% 1/s) | n Batch Cat. Amax(NM | CcONd
)
11.3 23 |B AsPh3 | 896 1
44.4 12 |C PPh3 876 2
93.1 8 D P(Cyclo) 904 3
211 6 A AsPh3 (911 4
Note: If we assume the hopping rate Is the same for all the
polymers, then a larger annihilation rate means a shorter chain
(with a linear chain model).
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Thin Films

Rapid

Transient Spectra of ZnO1-3 (B) in FILM deactivation of
the excited state
(non-linear with
power). Subtle
dynamic
differences
between films,
but the spectra
show differences
base on sol.
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Transient Kinetics of ZnO1-3 (B) in FILM @ 458.9 nm
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x0
y0
ys
al
tl
a2
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= 0.95576
0.1800 =0
-0.4546468 +0
-0.1172+0
-0.2732+0
-22.08 +7.284
0.1057 *0.0416
-2.606 +0.4760
6.660 +2.268
-4.772 +4.239
0.4619 *0.3366
-0.7113+0.2336
142.6 +66.10
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Conclusions

Annihilation data correlates very well with preliminary
conductivity data.

— Does this mean that intrachain communication is key?

— Or Is this another indication that some polymers form aggregates
(and interchain communication is important?)

More structural information is needed to correlate with the
photo-physical data

— Isour nvs. A plot saturated at ~860 nm, or do we just need more
data?

— Do we have chain-chain interactions?

Films show fast deactivation pathway

— Is this annihilation or something else?
— How do we test this?
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